Randić Index of a Line Graph

نویسندگان

چکیده

The Randić index of a graph G, denoted by R(G), is defined as the sum 1/d(u)d(v) for all edges uv where d(u) denotes degree vertex u in G. In this note, we show that R(L(T))>n4 any tree T order n≥3. A number relevant conjectures are proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randić index and the diameter of a graph

The Randić index R(G) of a nontrivial connected graph G is defined as the sum of the weights (d(u)d(v))− 1 2 over all edges e = uv ofG. We prove that R(G) ≥ d(G)/2, where d(G) is the diameter of G. This immediately implies that R(G) ≥ r(G)/2, which is the closest result to the well-known Grafiti conjecture R(G) ≥ r(G) − 1 of Fajtlowicz [4], where r(G) is the radius of G. Asymptotically, our res...

متن کامل

Ashwini Index of a ‎Graph

Motivated by the terminal Wiener index‎, ‎we define the Ashwini index $mathcal{A}$ of trees as‎ begin{eqnarray*}‎ % ‎nonumber to remove numbering (before each equation)‎ ‎mathcal{A}(T) &=& sumlimits_{1leq i

متن کامل

Peripheral Wiener Index of a Graph

The eccentricity of a vertex $v$ is the maximum distance between $v$ and anyother vertex. A vertex with maximum eccentricity is called a peripheral vertex.The peripheral Wiener index $ PW(G)$ of a graph $G$ is defined as the sum ofthe distances between all pairs of peripheral vertices of $G.$ In this paper, weinitiate the study of the peripheral Wiener index and we investigate its basicproperti...

متن کامل

On the Higher Randić Index

Let G be a simple graph with vertex set V(G) {v1,v2 ,...vn} . For every vertex i v , ( ) i  v represents the degree of vertex i v . The h-th order of Randić index, h R is defined as the sum of terms 1 2 1 1 ( ), ( )... ( ) i i ih  v  v  v  over all paths of length h contained (as sub graphs) in G . In this paper , some bounds for higher Randić index and a method for computing the higher R...

متن کامل

The Smallest Randić Index for Trees

The general Randić index Rα(G) is the sum of the weight d(u)d(v)α over all edges uv of a graph G, where α is a real number and d(u) is the degree of the vertex u of G. In this paper, for any real number α = 0, the first three minimum general Randić indices among trees are determined, and the corresponding extremal trees are characterized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2022

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms11050210